📲 규제 기법
딥러닝
의 경우 층
이 깊지 않더라도 최적화가 필요한 파라미터
가 굉장히 많습니다.
이 경우 비교적 깊지 않더라도 과대적합
에 빠질 수 있다는 문제가 존재하고 있지만,
딥러닝
에선 보통 깊이를 줄이지 않고 과대적합
을 방지하는 규제
를 사용합니다.
대표적으로 데이터 증대
, 드롭아웃
, 가중치 감쇠
가 있고 이에 대해 알아봅니다.
1분 미만
딥러닝
의 경우 층
이 깊지 않더라도 최적화가 필요한 파라미터
가 굉장히 많습니다.
이 경우 비교적 깊지 않더라도 과대적합
에 빠질 수 있다는 문제가 존재하고 있지만,
딥러닝
에선 보통 깊이를 줄이지 않고 과대적합
을 방지하는 규제
를 사용합니다.
대표적으로 데이터 증대
, 드롭아웃
, 가중치 감쇠
가 있고 이에 대해 알아봅니다.